Enhancing Eigenspace-Based MLLR Speaker Adaptation Using a Fuzzy Logic Learning Control Scheme
نویسندگان
چکیده
منابع مشابه
Speaker Adaptation Using Lattice-based MLLR
This paper presents lattice-based maximum likelihood linear regression (MLLR) for unsupervised adaptation. Lattice MLLR accumulates the statistics used in the MLLR transform estimation procedure using a forward-backward pass through a word-lattice of alternative hypotheses rather than assuming that the 1-best transcription is accurate as in standard unsupervised MLLR. This results in the abilit...
متن کاملKernel Eigenspace-based Mllr Adaptation Using Multiple Regression Classes
Recently, we have been investigating the application of kernel methods to improve the performance of eigenvoice-based adaptation methods by exploiting possible nonlinearity in their original working space. We proposed the kernel eigenvoice adaptation (KEV) in [1], and the kernel eigenspace-based MLLR adaptation (KEMLLR) in [2]. In KEMLLR, speaker-dependent MLLR transformation matrices are mappe...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملA MAP-like weighting scheme for MLLR speaker adaptation
This paper presents an approach for fast, unsupervised, online MLLR speaker adaptation using two MAP-like weighting schemes, a static and a dynamic one. While for the standard MLLR approach several sentences are necessary before a reliable estimation of the transformations is possible, the weighted approach shows good results even if adaptation is conducted after only a few short utterances. Ex...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2011
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.e94.d.1909